In-Situ Determination of Buildings’ Thermo-Physical Characteristics - Arash Rasooli

Arash Rasooli | A+BE Architecture and the Built Environment | 2020 | Zachte kaft | Engels
Leverbaar
Niet op voorraad in de winkel
€ 29,95

Beschrijving

Accurate determination of building’s critical thermo-physical characteristics such as the walls’ thermal resistance, thermal conductivity, and volumetric heat capacity is essential to indicate effective and efficient energy conservation strategies at building level. In practice, the values of these parameters, which determine not only possible energy savings, but also related costs, are rarely available because the current determination methods are time-and-effort-expensive, and consequently seldom used. This thesis combines theories, simulations, computations, and experiments to develop and improve methods and approaches for determination of a number of buildings’ most important thermophysical characteristics. First, a modification to the existing standard method, “ISO 9869 Average Method” is proposed to measure the walls’ thermal resistance. Two current problems are solved: long measurement duration (weeks) and imprecision. To further shorten the measurement period to a few hours, a new transient in-situ method, Excitation Pulse Method, EPM (Patent No. 2014467), is then developed and tested. This method allows the determination of the walls’ response factors which can be applied directly in dynamic models. More importantly, it is used to extract critical construction information including walls’ thermal resistance, thermal conductivity, volumetric heat capacity, and the possible layer composition. Finally, in an attempt to reduce the hassle, cost, and intrusion associated with locally-conducted experiments, the use of data from smart meters and home automation systems is explored. Building’s global characteristics including heat loss coefficient, global heat capacitance and daily air change rates are accordingly determined.
Lees meer

Beschrijving

Accurate determination of building’s critical thermo-physical characteristics such as the walls’ thermal resistance, thermal conductivity, and volumetric heat capacity is essential to indicate effective and efficient energy conservation strategies at building level. In practice, the values of these parameters, which determine not only possible energy savings, but also related costs, are rarely available because the current determination methods are time-and-effort-expensive, and consequently seldom used. This thesis combines theories, simulations, computations, and experiments to develop and improve methods and approaches for determination of a number of buildings’ most important thermophysical characteristics. First, a modification to the existing standard method, “ISO 9869 Average Method” is proposed to measure the walls’ thermal resistance. Two current problems are solved: long measurement duration (weeks) and imprecision. To further shorten the measurement period to a few hours, a new transient in-situ method, Excitation Pulse Method, EPM (Patent No. 2014467), is then developed and tested. This method allows the determination of the walls’ response factors which can be applied directly in dynamic models. More importantly, it is used to extract critical construction information including walls’ thermal resistance, thermal conductivity, volumetric heat capacity, and the possible layer composition. Finally, in an attempt to reduce the hassle, cost, and intrusion associated with locally-conducted experiments, the use of data from smart meters and home automation systems is explored. Building’s global characteristics including heat loss coefficient, global heat capacitance and daily air change rates are accordingly determined.

Specificaties

Door (auteur) Arash Rasooli
Uitgeverij TU Delft Open
Genre Bouwkunst, architectuur
Uitgave Zachte kaft
Aantal pagina's 224
Verschenen op 05-06-2020
ISBN / EAN 9789463662765
Taal Engels
Gewicht 524 g
Hoogte 235 mm
Breedte 190 mm
Dikte 15 mm